Definition of Limit
Basic Limit Theorems
One sided Limits
Infinite Limits, Limit at infinity and
Asymptotes
Infinite limits and Vertical Asymptotes
Limit at infinity and Horizontal asymptotes
Continuity of a function
One sided continuity
Continuity on Intervals
Intermediate Value Theorem (IVT)

3 — LIMIT AND CONTINUITY

3.1 Definition of Limit

Definition 3.1.1 Formal Definition of Limit Let f be a function defined on an open interval containing a, with the possible exception of a itself. Then the limit of f(x) as x approaches a is the number L, written as

$$\lim_{x \to a} f(x) = L \quad \text{iff}$$

for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that if

$$0 < |x-a| < \delta$$
, then $|f(x) - L| < \varepsilon$.

A Geometric Interpretation

Let $\varepsilon>0$ be given. Draw the lines $y=L+\varepsilon$ and $y=L-\varepsilon$. Since $|f(x)-L|<\varepsilon$ is equivalent to $L-\varepsilon< x < L+\varepsilon$, $\lim_{x\to a} f(x) = L$ exists provided that we can find a number δ such that if we restrict x to lie in the interval $(a-\delta,a+\delta)$ with $x\neq a$, then the graph of y=f(x) lies inside the band of width 2ε determined by the lines $y=L-\varepsilon$ and $y=L-\varepsilon$. (See Figure 3.1) You can see from Figure 3.1 that once a number $\delta>0$ has been found, then any number smaller than d will also satisfy the requirement.

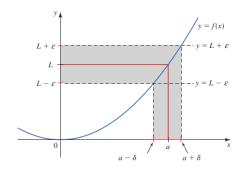


Figure 3.1:

- 1. δ is a function of ε
- 2. δ is not unique
- 3. For all $\delta' < \delta$ it is true

■ Example 3.1 Show that

$$\lim_{x\to 4}(3x-4)=8$$

Proof: Let $\varepsilon > 0$ be given. We must find $\delta > 0$ such that

$$0 < |x-4| < \delta \implies |f(x)-8| < \varepsilon$$

Consider

$$|f(x) - 8| < \varepsilon \implies |(3x - 4) - 8| < \varepsilon$$

 $\Rightarrow |3x - 12| < \varepsilon$
 $\Rightarrow |x - 4| < \frac{\varepsilon}{3}$

Now choose $\delta = \frac{\varepsilon}{3}$. Thus

$$0 < |x-4| < \delta \implies |(3x-4)-8| = |3x-12| = 3|x-4| < 3\frac{\varepsilon}{3} = \varepsilon$$

Example 3.2 Show that
$$\lim_{x\to 2} (x^2 - 1) = 3$$

Proof: Let $\varepsilon > 0$ be given. We must find $\delta > 0$ such that

$$0 < |x-2| < \delta \implies |f(x)-3| < \varepsilon$$

Consider

$$|f(x) - 3| < \varepsilon \implies |(x^2 - 1) - 3| < \varepsilon$$

 $\Rightarrow |x^2 - 4| < \varepsilon$
 $\Rightarrow |(x - 2)(x + 2)| < \varepsilon$

Let $\delta = 1$, thus,

$$|x-2| < 1$$
 \Rightarrow $-1 < x-2 < 1$
 \Rightarrow $3 < x+2 < 5$
 $Hence, |x+2| < 5$

Thus we have

$$|x^2 - 4| = |x + 2||x - 2| < 5|x - 2| < \varepsilon \Rightarrow |x - 2| < \frac{\varepsilon}{5}$$

Now choose $\delta = \min(\frac{\varepsilon}{5}, 1)$

Thus

$$0 < |x-2| < \delta \implies |(x^2-1)-3| < 5|x-2| < 5\frac{\varepsilon}{5} = \varepsilon$$

Example 3.3 Using $\varepsilon - \delta$ definition of limit prove that

1.
$$\lim_{x \to 3} (x^2 + x) = 12$$

1.
$$\lim_{x \to 3} (x^2 + x) = 12$$

2. $\lim_{x \to -3} (x^2 + x) = 6$

3.
$$\lim_{x \to 3} \frac{2}{x+3} = \frac{1}{3}$$

4.
$$\lim_{x\to 9} (2+\sqrt{x}) = 5$$

1. Let $\varepsilon > 0$ be given. We must find $\delta > 0$ such that Proof.

$$0 < |x-3| < \delta \implies |(x^2+x)-12| < \varepsilon$$

Consider

$$|f(x) - 12| < \varepsilon \implies |(x^2 + x) - 12)| < \varepsilon$$

 $\Rightarrow |(x+4)(x-3)| < \varepsilon$
 $\Rightarrow |x+4||x-3| < \varepsilon$

Take $\delta = 1$, then

$$|x-3| < \delta \implies |x-3| < 1$$

 $\Rightarrow -1 < x-3 < 1$
 $\Rightarrow 2 < x < 4$
 $\Rightarrow 6 < |x+4| < 8$

Thus we have

$$|f(x) - 12| = |x + 4||x - 3| < 8|x - 3| < \varepsilon$$
 iff $|x - 3| < \frac{\varepsilon}{8}$

Now choose $\delta = min(1, \frac{\varepsilon}{8})$

Thus,

$$0 < |x-3| < \delta \Rightarrow |x^2 + x - 12| = |x+4||x-3| < 8\frac{\varepsilon}{8} = \varepsilon$$

2. Let $\varepsilon > 0$ be given. We must find $\delta > 0$ such that

$$0 < |x - (-3)| < \delta \implies |(x^2 + x) - 6| < \varepsilon$$

Consider

$$|f(x) - 6| < \varepsilon \implies |(x^2 + x) - 6| < \varepsilon$$

 $\Rightarrow |(x - 2)(x + 3)| < \varepsilon$
 $\Rightarrow |x + 3||x - 2| < \varepsilon$

Take $\delta = 1$, then

$$|x+3| < \delta \Rightarrow |x+3| < 1$$

$$\Rightarrow -1 < x+3 < 1$$

$$\Rightarrow -4 < x < -2$$

$$\Rightarrow -6 < x-2 < -4$$

$$\Rightarrow 4 < 2-x < 6$$

$$\Rightarrow |2-x| < 6$$

Thus we have

$$|f(x) - 6| = |x + 3||x - 2| < 6|x + 3| < \varepsilon$$
 iff $|x + 3| < \frac{\varepsilon}{6}$

Now choose $\delta = min(1, \frac{\varepsilon}{6})$

Thus,

$$0 < |x - 3| < \delta \Rightarrow |x^2 + x - 6| = |x + 3||x - 2| < 6\frac{\varepsilon}{6} = \varepsilon$$

$$\lim_{x \to -3} (x^2 + x) = 6$$

3. Let $\varepsilon > 0$ be given. We must find δ such that

$$0 < |x-3| < \delta \Rightarrow \left| f(x) - \frac{1}{3} \right| < \varepsilon$$

Consider

$$\begin{vmatrix} f(x) - \frac{1}{3} \end{vmatrix} < \varepsilon \quad \Rightarrow \quad \left| \frac{2}{x+3} - \frac{1}{3} \right| < \varepsilon$$

$$\Rightarrow \quad \left| \frac{6 - (x+3)}{3(x+3)} \right| < \varepsilon$$

$$\Rightarrow \quad \frac{1}{3} \left| \frac{x-3}{x+3} \right| < \varepsilon$$

Take $\delta = 1$, then

$$|x-3| < \delta \implies |x-3| < 1$$

$$\Rightarrow -1 < x - 3 < 1$$

$$\Rightarrow 2 < x < 4$$

$$\Rightarrow 5 < |x+3| < 7$$

$$\Rightarrow \frac{1}{7} < \frac{1}{|x+3|} < \frac{1}{5}$$

Thus we have
$$\frac{1}{3}|x-3|\frac{1}{|x+3|} < \frac{1}{15}|x-3| < \varepsilon \quad \text{iff} \quad |x-3| < 15\varepsilon$$

Now choose $\delta = min(1, 15\varepsilon)$

Thus,

$$0 < |x-3| < \delta \implies \left| \frac{2}{x+3} - \frac{1}{3} \right| = \frac{1}{3} \left| \frac{x-3}{x+3} \right| < \frac{1}{15} 15\varepsilon = \varepsilon$$

4. Let $\varepsilon > 0$ be given. We must find δ such that

$$0 < |x-9| < \delta \Rightarrow |f(x)-5| < \varepsilon$$

Consider

$$|f(x) - 5| < \varepsilon \implies |(2 + \sqrt{x}) - 5| < \varepsilon$$

 $\Rightarrow |\sqrt{x} - 3| < \varepsilon$
 $\Rightarrow |\frac{x - 9}{\sqrt{x} + 3}| < \varepsilon$

Take $\delta = 1$, then

$$|x-9| < \delta \implies |x-9| < 1$$

$$\Rightarrow -1 < x-9 < 1$$

$$\Rightarrow 8 < x < 10$$

$$\Rightarrow \sqrt{8} + 3 < \sqrt{x} + 3 < \sqrt{10} + 3$$

$$\Rightarrow \frac{1}{\sqrt{10} + 3} < \frac{1}{|\sqrt{x} + 3|} < \frac{1}{\sqrt{8} + 3}$$

Thus we have
$$|x-9| \frac{1}{|\sqrt{x}+3|} < \frac{1}{\sqrt{8}+3} |x-9| < \varepsilon \quad iff \quad |x-9| < (\sqrt{8}+3)\varepsilon$$

Now choose $\delta = min(1, (\sqrt{8} + 3)\varepsilon)$

Thus,

$$0 < |x-9| < \delta \Rightarrow |(2+\sqrt{x}-5)| = \left| \frac{x-9}{\sqrt{x}+3} \right|$$

$$< \frac{1}{\sqrt{8}+3} (\sqrt{8}+3)\varepsilon = \varepsilon$$

3.2 **Basic Limit Theorems**

Theorem 3.2.1 If m and b are any constants, then $\lim_{x\to a} (mx+b) = ma+b$

Theorem 3.2.2 If c is a constant, then for any number a, $\lim_{x \to a} c = c$

Theorem 3.2.3 If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then;

- 1. $\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm M$ 2. $\lim_{x \to a} (f(x).g(x)) = \lim_{x \to a} f(x). \lim_{x \to a} g(x) = L.M$ 3. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$ provided that $M \neq 0$

Theorem 3.2.4 If $\lim_{x\to a} f(x) = L$ and n is any positive integer, then

$$\lim_{x \to a} [f(x)]^n = L^n$$

Theorem 3.2.5 If $\lim_{x\to a} f(x) = L$, then

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$$

if L > 0 and n is any positive integer, or if L < 0 and n is a positive odd integer

Theorem 3.2.6 If f and g are functions such that $\lim_{x\to a} g(x) = L$ and $\lim_{x\to a} f(x) = f(L)$, then $\lim_{x\to a} f(g(x)) = f\left(\lim_{x\to a} g(x)\right) = f(L)$

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$$

Example 3.4 Evaluate the following limit

- (a) $\lim_{x \to -1} (3x^2 2x + 1)^3$ (b) $\lim_{x \to 1} \frac{3x^3 5x^2 1}{2x 3}$ (c) $\lim_{x \to 2} \frac{2x^2 5x + 2}{5x^2 7x 6}$ (d) $\lim_{x \to 9} \frac{x 9}{\sqrt{x} 3}$ (e) $\lim_{x \to 0} \frac{\sqrt{x + 1} \sqrt{1 x}}{x}$ (f) $\lim_{x \to 8} \frac{x^{2/3} + 3\sqrt{x}}{4 16/x}$ (i) $\lim_{x \to 1} \frac{3x 3}{\sqrt[3]{x + 7} 2}$

Solution: (i) Let $t = \lim_{x \to 1} \sqrt[3]{x+7} \implies t^3 = x+7 \implies x = t^3-7$

Observe that as x approaches 1, t approaches 2. Therefore

$$\lim_{x \to 1} \frac{3x - 3}{\sqrt[3]{x + 7} - 2} = \lim_{t \to 2} \frac{3(t^3 - 7) - 3}{t - 2} = \lim_{t \to 2} \frac{3t^3 - 24}{t - 2}$$
$$= \lim_{t \to 2} \frac{3(t - 2)(t^2 + 2t + 4)}{t - 2} = \lim_{t \to 2} 3(t^2 + 2t + 4) = 36$$

3.3 One sided Limits

Definition 3.3.1 1. Let f be a function which is defined at every number in some open interval (a,c). Then the limit of f(x), as x approaches a from the right, is L, written

$$\lim_{x \to a^{+}} f(x) = L$$

if for any $\varepsilon > 0$, however small, there exists a $\delta > 0$ such that,

$$|f(x) - L| < \varepsilon$$
 whenever $0 < x - a < \delta$

2. Let f be a function which is defined at every number in some open interval (d,a). Then the limit of f(x), as x approaches a from the left, is L, written

$$\lim_{x \to a^{-}} f(x) = L$$

if for any $\varepsilon > 0$, however small, there exists a $\delta > 0$ such that,

$$|f(x) - L| < \varepsilon$$
 whenever $-\delta < x - a < 0$

Theorem 3.3.1 If f is defined throughout an open interval containing a, except possibly at a itself, then $\lim_{x\to a} f(x) = L$ if and only if both $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$.

Example 3.5 Find
$$\lim_{x\to 2^+} (1+\sqrt{x-2})$$

■ Example 3.6 Suppose $f(x) = \frac{|x|}{x}$ if $x \neq 0$ and f(0) = 1. Find $\lim_{x \to 0^-} f(x)$ and $\lim_{x \to 0^+} f(x)$. What is $\lim_{x \to 0^+} f(x)$?

■ Example 3.7 Suppose
$$f(x) = \begin{cases} x+3 & \text{if } x \neq 1 \\ 2, & \text{if } x = 1 \end{cases}$$

■ Example 3.8 Suppose
$$f(x) = \begin{cases} -x+3 & \text{if } x \leq 2 \\ \sqrt{x-2}, & \text{if } x \geq 2 \end{cases}$$

The Squeeze Theorem

Theorem 3.3.2 The Squeeze Theorem

Suppose that $f(x) \le g(x) \le h(x)$ for all x in an open interval containing a, except possibly at a, and

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$$

Then

$$\lim_{x \to a} g(x) = L$$

3.3 One sided Limits 51

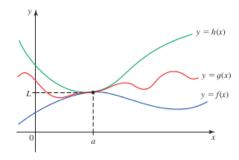


Figure 1: An illustration of the Squeeze Theorem

Example 3.9 Find
$$\lim_{x\to 0} x^2 \sin \frac{1}{x}$$

Solution: Since $-1 \le \sin t \le 1$ for every real number t, we have

$$-1 \le \sin \frac{1}{x} \le 1$$
 for every $x \ne 0$

Therefore

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2, \quad x \ne 0$$

Let
$$f(x) = -x^2$$
, $g(x) = x^2 \sin \frac{1}{x}$, and $h(x) = x^2$. Then

$$f(x) \le g(x) \le h(x)$$
.

Since

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (-x^2) = 0 \quad and \quad \lim_{x \to 0} h(x) = \lim_{x \to 0} x^2 = 0$$

The squeeze theorem implies that

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

Theorem 3.3.3

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Proof: First, suppose that $0 < x < \frac{\pi}{2}$. The Figure below shows a sector of a circle of radius 1.

The area A of a sector with radius r and a central angle of θ radians can be derived by:

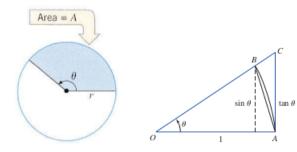
$$\frac{A}{\pi r^2} = \frac{\theta}{2\pi} \left[\frac{\text{area of the sector}}{\text{area of the circle}} = \frac{\text{central angle of the sector}}{\text{centar angle of the circle}} \right]$$

From the figure we see that

Area of
$$\triangle OAB = \frac{1}{2}$$
 base.height $= \frac{1}{2}(1)\sin\theta = \frac{1}{2}\sin\theta$

Area of sector
$$OAB = \frac{1}{2}r^2\theta = \frac{1}{2}\theta$$

Area of
$$\triangle OAC = \frac{1}{2}$$
base.height $= \frac{1}{2}(1)\tan\theta = \frac{1}{2}\tan\theta$



Since $0 < \text{Area of } \triangle \textit{OAB} < \text{Area of sector } \textit{OAB} < \text{Area of } \triangle \textit{OAC}$, we have,

$$0<\frac{1}{2}\sin\theta<\frac{1}{2}\theta<\frac{1}{2}\tan\theta$$

Multiplying through by $(2/\sin\theta)$ and keeping in mind that $\sin\theta > 0$ and $\cos\theta > 0$ for $0 < \theta < \pi/2$ we obtain

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

or, upon taking reciprocals,

$$\cos \theta < \frac{\sin \theta}{\theta} < 1$$

Let $f(\theta) = \cos \theta, g(\theta) = \frac{\sin \theta}{\theta}, h(\theta) = 1$ Observe that,

$$\lim_{\theta \to 0} f(0) = \lim_{\theta \to 0} \cos \theta = 1 = \lim_{\theta \to 0} h(\theta)$$

Then the squeeze Theorem implies that

$$\lim_{\theta \to 0} g(\theta) = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Theorem 3.3.4

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$

■ Example 3.10 Find

(a)
$$\lim_{x \to 0} \frac{\sin 2x}{3x}$$
(b)
$$\lim_{x \to 0} \frac{\tan x}{x}$$

$$(c) \lim_{x \to 0} \frac{2x + 1 - \cos x}{4x}$$

Solution:

(a)
$$\lim_{x \to 0} \frac{\sin 2x}{3x} = \lim_{x \to 0} \frac{2}{3} \frac{\sin 2x}{2x} = \frac{2}{3}(1) = \frac{2}{3}$$

(b)
$$\lim_{r \to 0} \frac{\tan x}{r} = \lim_{r \to 0} \frac{1}{\cos x} \frac{\sin x}{r} = \frac{1}{\cos 0} (1) = 1$$

(a)
$$\lim_{x \to 0} \frac{\sin 2x}{3x} = \lim_{x \to 0} \frac{2}{3} \frac{\sin 2x}{2x} = \frac{2}{3}(1) = \frac{2}{3}$$

(b) $\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{1}{\cos x} \frac{\sin x}{x} = \frac{1}{\cos 0}(1) = 1$
(c) $\lim_{x \to 0} \frac{2x + 1 - \cos x}{4x} = \lim_{x \to 0} \frac{2x}{4x} - \frac{\cos x - 1}{4x} = \frac{2}{4} - (1)(0) = \frac{1}{2}$

Infinite Limits, Limit at infinity and Asymptotes 3.4

Infinite limits and Vertical Asymptotes 3.4.1

Definition 3.4.1 Let f be defined on an interval that contains a except possibly at a itself. Then

1.
$$\lim_{x \to a} f(x) = \infty$$
 iff for every $M > 0$, there is a $\delta > 0$, such that

if
$$0 < |x - a| < \delta$$
, then $f(x) > M$

2.
$$\lim_{x \to a} f(x) = -\infty$$
 iff for every $N > 0$, there is a $\delta > 0$,

if
$$0 < |x - a| < \delta$$
, then $f(x) < N$

Definition 3.4.2 The line x = a is called a vertical asymptote of the graph of y = f(x) if any one of the following limits holds true:

$$\lim_{x \to a^{-}} f(x) = \pm \infty, \lim_{x \to a^{-}} f(x) = \pm \infty, \lim_{x \to a} f(x) = \pm \infty$$

■ Example 3.11 Show that
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$

Solution: Let M > 0 be given. We want to show that there exists a $\delta > 0$ such that

$$\frac{1}{x^2} > M$$
 whenever $0 < |x - 0| < \delta$.

To find δ , consider

$$\frac{1}{x^2} > M$$

$$x^2 < \frac{1}{M} \implies |x| < \frac{1}{\sqrt{M}}$$

Choose
$$\delta = \frac{1}{\sqrt{M}}$$
. Thus,

$$|x| < \delta \implies x^2 < \delta^2$$

so

$$\frac{1}{x^2} > \frac{1}{\delta^2} \ge M$$

(a)
$$\lim_{x \to 3^+} \frac{2x}{x - 3} = \infty$$

■ Example 3.12 (a)
$$\lim_{x \to 3^+} \frac{2x}{x-3} = \infty$$
 (c) $\lim_{x \to 3^+} \frac{x^2 + x + 2}{x^2 - 2x - 3} = \infty$ (b) $\lim_{x \to 3^-} \frac{2x}{x-3} = -\infty$

(b)
$$\lim_{x \to 3^{-}} \frac{2x}{x - 3} = -\infty$$

Therefore, the line x = 3 is the vertical asymptote of $f(x) = \frac{2x}{x - 3}$

Limit at infinity and Horizontal asymptotes

Definition 3.4.3 1. Let f be defined on an interval (a, ∞) , then

$$\lim_{x \to \infty} f(x) = L \text{ iff}$$

for every $\varepsilon > 0$ there is a number M > 0 such that if x > M, then $|f(x) - L| < \varepsilon$.

2. Let f be defined on an interval $(-\infty, a)$, then

$$\lim_{x \to -\infty} f(x) = L \text{ iff}$$

for every $\varepsilon > 0$ there is a number M < 0 such that if x < M, then $|f(x) - L| < \varepsilon$.

Definition 3.4.4 The line y = L is called horizontal asymptote of the graph of y = f(x) if either

$$\lim_{x \to \infty} f(x) = L$$
, or $\lim_{x \to -\infty} f(x) = L$

■ Example 3.13 Find

(a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

(b) $\lim_{x \to -\infty} \frac{1}{x} = 0$
(c) $\lim_{x \to \infty} \frac{2x^2 - x + 1}{3x^2 + 2x - 1}$

(d)
$$\lim_{x \to -\infty} \frac{x^2 + 1}{x - 2}$$

(e)
$$\lim_{x \to -\infty} \frac{3x}{\sqrt{x^2 + 1}}$$

(c)
$$\lim_{x \to -\infty} \frac{2x^2 - x + 1}{2x^2 + 2x + 1}$$

Therefore, the line y = 0 is the horizontal asymptote of $f(x) = \frac{1}{x}$

Example 3.14 Find the vertical and horizontal asymptotes of the graph of

$$f(x) = \frac{\sqrt{9x^2 + 1}}{3x - 5}$$

Solution:

1. To find vertical asymptote

$$\lim_{\substack{5^{-} \\ x \to \frac{3}{3}}} \frac{\sqrt{9x^2 + 1}}{3x - 5} = -\infty$$

Thus, the line $x = \frac{5}{3}$ is the vertical asymptote of f(x)

2. To find the horizontal Asymptote

$$\lim_{x \to \infty} \frac{\sqrt{9x^2 + 1}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{x^2(9 + \frac{1}{x^2})}}{3x - 5}$$

$$= \lim_{x \to \infty} \frac{x\sqrt{9 + \frac{1}{x^2}}}{3x - 5}, \text{ since } x > 0, \sqrt{x^2} = x$$

$$= \lim_{x \to \infty} \frac{x\sqrt{9 + \frac{1}{x^2}}}{3x - 5} = \lim_{x \to \infty} \frac{\sqrt{9 + \frac{1}{x^2}}}{3x - 5} = \frac{\sqrt{9}}{3} = 1$$

Again,

$$\lim_{x \to -\infty} \frac{\sqrt{9x^2 + 1}}{3x - 5} = \lim_{x \to -\infty} \frac{\sqrt{x^2(9 + \frac{1}{x^2})}}{3x - 5} = \lim_{x \to -\infty} \frac{(-x)\sqrt{9 + \frac{1}{x^2}}}{3x - 5}, since x < 0, \sqrt{x^2} = -x$$

$$= \lim_{x \to -\infty} \frac{(-x)\sqrt{9 + \frac{1}{x^2}}}{x(3 - \frac{5}{x})} = \lim_{x \to -\infty} \frac{(-1)\sqrt{9 + \frac{1}{x^2}}}{(3 - \frac{5}{x})} = \frac{-\sqrt{9}}{3} = -1$$

Thus, the lines y = 1 and y = -1 are the horizontal asymptote of f(x)

55

se 3.1 Find the asymptote of the following functions

1.
$$f(x) = \frac{2x}{1 - x^2}$$

1.
$$f(x) = \frac{2x}{1 - x^2}$$

2. $g(x) = \frac{2x - 5}{x^3 - 2x^2 + x}$

Continuity of a function 3.5

Definition 3.5.1 A function f is said to be continuous at a if $\lim_{x\to a} f(x) = f(a)$

Note: If f is continuous at a, then

- 1. f(a) is defined
- 2. $\lim_{x \to a} f(x)$ exists
- $3. \lim f(x) = f(a)$

If f is not continuous at a, then we say that f is discontinuous at a.

Example 3.15 Find the points of discontinuity of

1.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

1.
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

2. $f(x) = \begin{cases} \frac{1}{x^2}, & if \quad x \neq 0\\ 1, & if \quad x = 0 \end{cases}$

3.
$$f(x) = \frac{2}{1}$$

3.
$$f(x) = \frac{2x}{1 - x^2}$$

4. $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2}, & \text{if } x \neq 2\\ 1, & \text{if } x = 2 \end{cases}$

3.5.1 One sided continuity

Definition 3.5.2 1. f is said to be continuous from the right at a if

$$\lim_{x \to a^+} f(x) = f(a)$$

 $\lim_{x \to a^+} f(x) = f(a)$ 2. f is said to be continuous from the left at a if

$$\lim_{x \to a^{-}} f(x) = f(a)$$

■ Example 3.16 Let $f(x) = \begin{cases} 2x+1 & \text{if } x < 1 \\ x^2-2 & \text{if } x \ge 1 \end{cases}$

Determine whether f is continuous from the right at 1 and/or from the left at 1.

Solution: Because

$$\lim_{x\to 1^-}f(x)=\lim_{x\to 1^-}(2x+1)=3\neq f(1)=-1.$$
 Hence, f is not continuous from the left at 1

$$\lim_{x\to 1^+}f(x)=\lim_{x\to 1^+}(2x+1)=-1=f(1)=-1.$$
 Hence, f is continuous from the right at 1.

A function f is continuous at a if and only if f is simultaneously continuous from the right and from the left at a.

3.5.2 Continuity on Intervals

Definition 3.5.3 A function f is said to be **continuous on an open interval** (a,b) if it is continuous at each point of (a,b). A function f is **continuous on a closed interval** [a,b] if it is continuous on (a,b) and is also continuous from the right at a and from the left at b. A function f is **continuous** on a half-open interval [a,b] or (a,b] if f is continuous on (a,b) and f is continuous from the right at a or f is continuous from the left at b, respectively.

Example 3.17 Show that the function f defined by $f(x) = \sqrt{9-x^2}$ is continuous on the closed interval [-3,3].

Solution: We first show that f is continuous on (-3,3). Let a be any number in (-3,3). Then, using the laws of limits, we have

the laws of limits, we have
$$\lim_{x \to a} f(x) = \lim_{x \to a} \sqrt{9 - x^2} = \sqrt{9 - a^2} = f(a)$$
 and this proves the assertion. Next, let us show that f is continuous from the right at -3 and from the

Next, let us show that f is continuous from the right at -3 and from the left at 3.

Again, by invoking the limit properties, we see that

$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} \sqrt{9 - x^2} = \sqrt{9 - 3^2} = 0 = f(-3)$$

and

 $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^-} \sqrt{9-x^2} = \sqrt{9-3^2} = 0 = f(3) \text{ and this proves the assertion.}$ Therefore, f is continuous on [-3,3].

Theorem 3.5.1 If f and g are continuous at a, and c is a constant then the following are also continuous at a.

(a)
$$f \pm g$$
,

(d)
$$\frac{f}{g}$$
, if $g(a) \neq 0$

Theorem 3.5.2 The following functions:

Polynomial, Rationals, Root functions, Trigonometric functions, Inverse trigonometric functions, exponential functions and Logarithmic functions are continuous on thier domain.

Theorem 3.5.3 If
$$\lim_{x\to a}g(x)=b$$
 and f is continuous at b , then
$$\lim_{x\to a}f(g(x))=f(b) \text{ i.e., } \lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))$$

Theorem 3.5.4 If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a i.e., $\lim_{x \to a} f(g(x)) = f(g(a))$

Example 3.18 Find the constant a and b such that

$$f(x) = \begin{cases} ax + 3, & if \ x > 1\\ 4 & if \ x = 1\\ x^2 + b & if \ x < 1 \end{cases}$$

is continuous at x = 1

Solution: f is continuous at a iff $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$

$$\lim_{x \to 1^{+}} f(x) = f(1) \quad \Rightarrow \quad \lim_{x \to 1^{+}} (ax+3) = f(1)$$

$$\Rightarrow \quad a+3 = 4 \Rightarrow a = 4-3 = 1$$
and
$$\lim_{x \to 1^{-}} f(x) = f(1) \quad \Rightarrow \quad \lim_{x \to 1^{-}} (x^{2}+b) = f(1)$$

$$\Rightarrow \quad 1+b = 4 \Rightarrow b = 4-1 = 3$$

Exercise 3.2 Determine whether f is continuous or discontinuous at a.

1.
$$f(x) = \sqrt{x-2}$$
; $a = 2$
2. $f(x) = \begin{cases} \frac{|x-4|}{x-4} & \text{for } x \neq 4 \\ e^{4-x} & \text{for } x = 4 \end{cases}$
3. $f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}$

Intermediate Value Theorem (IVT) 3.5.3

Theorem 3.5.5 Intermediate Value Theorem (IVT)

If $f \in C[a,b]$ and k is any number between f(a) and f(b), where $f(a) \neq f(b)$ then there exist a number c in (a,b) for which f(c) = k

Theorem 3.5.6 IVT for Locating root

If f(x) is continuous on [a,b], f(a) and f(b) are of opposite signs, then there exists at least one number x_0 in (a,b) such that $f(x_0) = 0$.

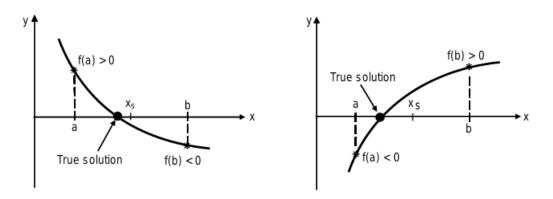


Figure 3.2: Solution of f(x) = 0 between x = a and x = b

■ Example 3.19 Show that the equation $x^5 - 2x^4 - 2x^3 + 8x^2 - 3x - 3$

$$x^5 - 2x^4 - 2x^3 + 8x^2 - 3x - 3$$

has a solution between 1 and 2

Solution: Let

$$f(x) = x^5 - 2x^4 - 2x^3 + 8x^2 - 3x - 3$$

Since f is a polynomial function, then f is continuous on $\mathbb R$.

Note that

$$f(1) = -1$$
 and $f(2) = 7$

Thus, f(1) < 0 < f(2)

i.e.,
$$k = 0$$
 is between $f(1)$ and $f(2)$

So, by the IVT there is a number c between 1 and 2 such that f(c) = 0.

Exercise 3.3 Show that the equation given below has at least one real root.

1. $2x^3 + x^2 - x + 1 = 5$ in [1,2]2. x + tanx = 1 in $[0, \frac{\pi}{4}]$ 3. $x^5 - x^2 + 2x + 3 = 0$ in [-1,0]

1.
$$2x^3 + x^2 - x + 1 = 5$$
 in [1, 2]

2.
$$x + tanx = 1$$
 in $[0, \frac{\pi}{4}]$

3.
$$x^5 - x^2 + 2x + 3 = 0$$
 in $[-1, 0]$

Zena S. @ ASTU, 2017